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Abstract

A distributed parameter model describing spatially-dependent hepatic processing of the
chemical compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) has previously
been reported [1]. The mathematical system consists of coupled nonlinear partial and ordi-
nary differential equations with delays. In this paper we investigate the qualitative behavior
of the system over a six-hour time period following a subcutaneous injection. A brief sum-
mary of the model is also given.
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1 Introduction

Numerous physiologically-based pharmacokinetic (PBPK) models have been developed to de-
scribe the uptake and elimination of the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin
(for example, see [2]-[6]). While most PBPK models assume well-mixed compartments, recent
work [1, 6, 7] has focused on the development of advanced techniques to account for spatially-
dependent tissue responses.

In rodents, TCDD has been shown to bind to two hepatic proteins: the aryl hydrocarbon
(Ah) receptor [8] and an inducible protein, cytochrome P4501A2 (CYP1A2) [9, 10]. Following
administration of TCDD, binding to the Ah receptor results in a dose-dependent induction of
CYP1A2 [9, 10]; therefore, this protein is present at both a basal (non-induced) and induced
level in the presence of TCDD. The liver response to dioxin is not homogeneous, resulting in
preferential localization around centrilobular regions at low doses [6]. Lumped parameter PBPK
models, which assume a uniform concentration of the toxin throughout the liver, cannot account
for this known heterogeneity in cellular response.

A partial differential equation model to describe the spatially-dependent hepatic processing
of TCDD has been proposed [1, 11] and is briefly summarized in Section 2. In Section 3 the
numerical scheme used in solving the resultant system of equations is given. Our preliminary
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computational results on the qualitative behavior of the system are discussed in Section 4. In
particular, we examined the behavior of the system on the time interval from zero to six hours,
prior to TCDD-induced CYP1A2 synthesis. We also studied the dependence of the solution
on two important model parameters, the dispersion number, Dy, and a circulatory delay, 7.
Finally, in Section 5 we discuss future research directions.

2 The TCDD Model

A mathematical model (1) has been developed [1, 11] to describe pharmacokinetic and pharma-
codynamic properties of TCDD. A convection-dispersion equation (la), based on the work of
Roberts and Rowland [12], characterizes the transport of blood elements in the liver sinusoidal
(blood) region. Throughout this discussion, the dimensionless spatial variable z takes on values
in the range [0,1]; # = 0 corresponds to the liver inlet, while z = 1 corresponds to the out-
let. Uptake of dioxin into the hepatic cells, called hepatocytes, is assumed to occur by passive
diffusion. The model includes the dynamics of TCDD-binding with two intracellular hepatic pro-
teins, the Ah receptor (1c)-(1d) and an inducible microsomal protein, CYP1A2 (le)-(1f). The
induction mechanism is described in terms of the fractional occupancy of the Ah receptor at a
previous time, t — 7., to account for the many intracellular processes which must occur before
an increase in CYP1A2 concentration is realized. Elimination in the liver (by metabolism and
biliary clearance) is assumed to be a first order process.

A well-mixed, combined venous/arterial blood compartment (1g), which includes a loss due to
the uptake and elimination of TCDD in the rest of the body, completes the system. A circulatory
lag, 7., accounts for the time delay in transport of blood elements from the exit of the liver to
the venous measurement location.

The mathematical system under consideration is as follows:

fuB 8CB 6203 803

—— =QDn—— — Q——+ P(Cuy — fus , 1
(VB+VDfUD) 5 Q N 52 an + P(Cuy — fusCB) (la)
OCy Pfug P
T ‘fH Cp— (E + k3)Cup — 9an(Cupy, Can) (1b)
+ k_1Can—r — gPr (Cupy, Cpr) + k_2Cpy_1,
OC gap—
# = 9an(Cuy,Can) — k_1Can_r, (1c)
0C an
T k_1Can—7 — 9an(Cup, Can) — kacanyCan + ks(an), (1d)
0Cp,_
% = gpr (Cu;p CPr) - k—2CPr—T7 (16)
aCtPr
ot - k—2CPr—T - gPr(CuHa CPr) - kd(Pr)CPr + ks(Pr) (1f)
Cap-r(t — 7, 2)
+ Ip, )
F Can(t — 1, 2)+ Capr(t — 10, )
dC, Qa
a0 = (OB —7e1) = Ca(t)) + I(2) — keCal(?), (1g)

C(s,z) = ®(z), sé€[-7,0],
Cp(t,0) = Cyu(t), (1h)
QCr(t,1) — QDN ZEE (1, 1) = Aga(2),

where C' = [Cp,Cuy, Can—r,Can, Cpr_1,Cpr,Cy]T. In Eqn. (1h), ® and Ags are assumed
known.
We note that gas and gp, are saturating nonlinearities modified from the usual product




terms,

gAh(ya Z) = k-l-lyza (2)
gPT (?/7 2) = k+23/27 for Y,z S R1 (3)

arising from the law of mass action in chemical kinetics. Specifically, we assume that within a
certain range of concentrations the system behaves according to the nonlinearities prescribed by
(2) and (3) but eventually saturates; i.e., due to the availability of binding species, we assume
the rates of formation of Ah-TCDD complex and CYP1A2-TCDD complex are bounded.

The mathematical model (1) consists of a nonlinear system of partial differential equations
with delays and questions of well-posedness are of interest. Detailed general theories of existence,
uniqueness, and continuous dependence for certain nonlinear parabolic systems (including the
TCDD model) are given in [11, 13]. Furthermore, a general result for related least-squares
parameter estimation problems is given in [14]. These results were obtained using a weak or
variational formulation of the problem and are based on ideas from the works of Banks et al. [15]-
[16] for nonlinear hyperbolic systems.

The summary given above, while brief, is included to provide the reader with a general
understanding of the complex dynamics of the system under investigation. The reader is referred
to the aforementioned works [1, 11, 13, 14] for complete discussions.

3 Numerical Methods

In this section we present an overview of the numerical methods used in our simulations. All
coefficient matrices, functions, vectors, etc. are as described in [11].

Our numerical scheme is based on a weak formulation [13] of the problem given in Eqn. (1).
To obtain the weak form, we multiplied the i** equation by a function 1); in a ”suitable” class of
test functions and then integrated in space in the first six equations, followed by integration by
parts in Eqn. (1a) only.

For ease of notation, we define

y =[O, Cus,Can-1,Can, Crr_r,Cpr,Cal’ =[y1,..., 47"

3.1 Finite Element Formulation

Let 0 = 29 < 1 < ... < &y = 1 be a uniform partition of the interval [0, 1] into N subintervals
of length h = 1/N. We take as basis elements the piecewise linear continuous functions, ¢;,

j=0,..., N, defined by

T—T;_1

v zj—1 ST L2y,
¢i(z) =4 5=, z; <<z,
0, 0<z<z;qorz;11 <zl

We define the Galerkin finite element approximations by
N
v (tr) = Yo og(t)é;(x), (4)

0%
0%

ui(te) = Yjloai(t)é(a),

for ¢ = 2,...,6, where the basis elements, ¢;, are as described above and Y~y
Next we substitute the finite element approximations (4) into the weak form of the equations.
Let yN (t) € RNFSIN+D+1 guch that

yN (1) = [a' (1), (1), ... a®(1), e (1)]"

The finite dimensional system we obtain, in terms of the time-dependent coefficients of the
Galerkin approximations, is given by

My (1) = AyY (1) + G (v (1) + F (1) + Apy™ (t — 7o) + Go (v (t — 7)), (5)



where the matrices M and A are elements of R(N+5(N+1)+1)x(N+5(N+1)+1) 41 the vector-valued
functions G,, F, Ap, and G, are elements of RN+5(N+1)+1

The initial condition, yY', for the semi-discrete problem (5) is taken as the Ly projection of
the original initial condition, ®, onto the finite element space.

3.2 General Algorithm

In these preliminary investigations, we seck solutions on the time interval from zero to six hours.
For simplification, we have assumed that no TCDD is present in the system on the interval [-6,0]
hours. By making this assumption, we can thereby ignore the induction delay term, G, for the
purpose of this discussion.

The semi-discrete problem we consider is given by

MGV () = Ay () + Gy (1) + F (1) + Apy™ (1 — 7o),
yN(s) = w'(s),  s€[-m,0]
The entries in the coefficient matrices M and A, consisting of certain combinations of inner
products of basis elements and their derivatives, were calculated analytically rather than through
use of a numerical integration scheme. The nonlinear vector function G, was treated in a similar
manner.

The “method of steps” [17] for ordinary differential equations was used to solve the problem
on each delay interval of length 7. (7. < 7). The general algorithm is described below:

Algorithm.
e Set T' = final time (T' < 7.)
e Form the coefficient matrices M and A
e Solve the linear system defining the initial condition y}’ in the finite element space

Te, Te<T
T, otherwise

SettO:Oandtf:{

do while t0 < T

— Solve on [t0,tf]

MV () = AYN () + G (v (1) + F(t) + Apyg (t — )
yV(t0) =y (t0).
— Set yi' (1) =y (1)

—t0=t0+ 7.
tf:{ 0+7, t0+7.<T

T, otherwise

e end

In order to evaluate y)', we stored the computed solution throughout the previous delay
interval and used an interpolation routine to find the value of the solution at time ¢t — 7. In fact,
only (y)n and (y)Y)snte were stored, as these are the only data required for the linear delay
term, Ap.
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Figure 1: Numerical solution obtained for Cg(t,1) varying the number of basis elements, N,
with Dy = 0.5. The solutions with N, = 16 and 32 are identical on this scale, indicating
convergence of the Galerkin approximations with 16 basis elements.

3.3 Implementation

The computer code was written in MATLAB version 5.1 (The MathWorks, Inc., Natick, MA)
and computations were carried out on a Sun Sparc Ultra II workstation and a personal computer
with a 180 MHz Intel Pentium Pro processor. The MATLAB routine ’odel5s’ [18] was used for
time stepping, which is a variable order, variable step method based on numerical differentiation
formulas. The relative and absolute error tolerances were set to 1 x 107°. Since this is a variable
step method, at time ¢ the solution over the previous delay interval had to be interpolated in
order to determine the value of the solution at time ¢+ — 7.. MATLAB’s interpolation routine
interpl’ was used with the ’spline’ option. This method fits the data with cubic splines between
data points, so that each segment of the curve fit has at least the same first and second derivatives
as the ones adjoining it. The maximum order of the integrator was set to two in order for it to be
in the range of accuracy of both the interpolation routine and the finite element approximations.

3.3.1 Convergence of the Numerical Scheme

The theoretical results presented in [11, 14] guarantee convergence of the Galerkin finite element
approximation scheme. However, we must determine the number, NV, of basis elements to be
used in meaningful simulations. We computed solutions over the time span from 0 to 1 hour
with fixed Dy and 7., and varied N. Numerical results obtained using a small number of basis
elements and ¢ very close to zero exhibited dynamics which were only eventually resolved by
decreasing the size of the spatial grid. This behavior is shown in Figure 1 with Dy = 0.5. For
values of the dispersion number of interest (0.5-100), we found that increasing Dy generally
resulted in a decrease in the number of basis elements required. For example, convergence was
obtained with 16 basis elements for the case Dy = 5 (Figure 2), as compared to just 8 basis
elements for Dy = 10 (Figure 3).

Increasing the dispersion number has the effect of smoothing concentration gradients along
the cylinder’s length [12]; that is, spatial variations in concentrations decrease with increasing
Dy, and therefore a less-refined spatial grid is required to capture system dynamics.
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Figure 2: Numerical solution obtained for Cp(t, 1) varying the number of basis elements, N,
with Dy = 5. The solutions with N, = 16 and N, = 32 are identical on this scale, indicating
convergence of the Galerkin approximations with 16 basis elements.

%107 Comparison of CB(I,l) varying Nx. for DN =10, = 0.016667 hours
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Figure 3: Numerical solution for Cp(t, 1) varying the number of basis elements, N, with Dy =
10. The solutions with N, = 8,16, and 32 are identical on this scale, indicating convergence of
the Galerkin approximations with 8 basis elements.



4 Model Simulations

4.1 Parameter Estimates, Boundary and Initial
Conditions

The majority of parameters used in these simulations were obtained from the literature (see
[11]). However, in order to qualitatively estimate the time-dependent exit flux term, Aqa(t),
we implemented a numerical scheme for the TCDD model satisfying a homogeneous Neumann
boundary condition, 8Cp (t,1) = 0. From a balance of fluxes we have

QOB (1. 1) ~ Dy 2 (1,1)) = Aga(r). (©

from which we obtained a discrete approximation to Aqs:
Aga(ti) = QCp (i, 1).

This data was then interpolated and used as an estimate for Ags when simulating model behavior
with the Robin boundary condition (6).

All simulations were carried out assuming zero initial conditions for concentrations involving
TCDD. Constant values were assumed for the initial levels of the Ah receptor and the induced
binding species, CYP1A2. Uptake of TCDD into the arterial/venous blood supply, 7(¢), was
assumed to be from a subcutaneous dose of 300 ng/kg body weight. This was described as a
first-order process with rate constant 0.05/hour, as in the work of Anderson et al. [5].

The qualitative behavior of the system was investigated while values for the axial disper-
sion number, Dy, and the circulatory delay, 7., were varied, holding all other biological and
physiological parameters fixed.

4.2 Predicted Behavior

The system was studied for Dy = 50, 7. = 1 minute, and 0 < ¢ < 6 hours. The most interesting
behavior occurs within the first two hours. As the concentration of TCDD in the liver blood
increases (Figure 4), free dioxin in the cells is quickly bound to the Ah receptor and CYP1A2.
The Ah receptor quickly becomes saturated (Figure 5) due to its low binding capacity. The con-
centration of the AhR-TCDD complex continues to rise, however, as newly synthesized protein
binds any available TCDD. Inactivation of the Ah receptor is modeled as a first-order process
(concentration dependent), so that at low concentrations the zero-order process of protein syn-
thesis dominates; that is, there is a net increase in cellular levels of receptor available for binding.

The second dioxin-binding species;, CYP1A2, takes longer to become saturated than the
Ah receptor because of its higher binding capacity (Figure 6). After roughly two hours, the
concentration of free CYP1A?2 is essentially depleted, as any newly synthesized protein rapidly
binds to free dioxin in the cells. A comparison of unbound TCDD in the liver blood to that in
the hepatocytes is given in Figure 7. The binding of TCDD to intracellular proteins causes an
initial decrease in the cellular concentration of free dioxin relative to that in the blood. Once
the two proteins become saturated, however, the unbound concentration of TCDD in the cells
begins to rise, but at no time does the cellular concentration exceed that in the blood. In other
words, for this set of model parameters the hepatocytes act as a sink.

4.3 Dependence on the Circulatory Delay
The rate of change of the combined arterial /venous blood compartment is given by the differential
equation

_ Qa

() = 3 (Co(t = 7, 1) = Ca(t) +1(t) = keCa(t), (7)

dc,
dt

with initial condition

Ca(0) = 0. 8)
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Figure 4: Concentration of dioxin at the exit from the liver, Cp(¢, 1).
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Figure 5: Concentrations of free Ah receptor protein and the bound Ah-TCDD complex. The
Ah receptor becomes saturated after approximately thirty minutes.
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If we assume a constant rate of uptake of TCDD from a subcutaneous depot over a finite time
interval [0, T;y],
Eqn. (7) can be rewritten

dC, (1)
dt

where ¢; = %),—“, p=c + ke, and

=c1Cp(t — 7, 1) = pCa(t) + Cinxpor,,1(t), (9)

_ 1 telab]
Xia(t) = { 0, otherwise.

We consider the only two possibilities of interest, 7. = 0 and 7. > 0.

Ignoring the Circulatory Delay
For the case 7. = 0, the analytic solution to (9) is

{ Cin(1— =) f o1 f1 M=) Cp(s, 1)ds, 0<t<Ti,

Gl —eTin) oy [y e M= Cp(s, 1)ds, ¢ > Tin.

Ca(t) = (10)

From (10), it is clear that for any ¢ > 0, the concentration of TCDD at the exit from the liver,
Cp(t, 1), contributes immediately to the predicted arterial blood concentration Cy(t).

4.3.1 Predicted Solution with Circulatory Delay

We now consider the case 7. > 0. Let ¢ € [0,7T], with T' < T;,,. We assume a zero background
concentration of TCDD in the system; in particular, Cg(¢,1) = 0 on [—7¢,0]. On the initial
interval of integration [0, 7], the rate of change of C, is given by

1Ca (1) = —pCa(t) + Cinxpo.12) (1),
CG(O) =0.

The analytic solution is
C.
Ca(t) = —=(1—e™"), te0,7]
I
On the next interval of integration [7., 27.], the governing differential equation for C, is given

by (9) with the initial condition

Cin —
Ca(Tc) — 7 (1 — € HTC).

The solution, for ¢ € [, 27], is

Cat) = e_“(t_Tc)Ca(Tc)—}—Cm(l—e_”(t_Tc))
M

¢
+cq / e_“(t_s)CB(s — Te, 1)ds

c

¢
= e_“(t_Tc)Ca(Tc)—}—Ca(t—rc)—i—cl/ e_”(t_s)C'B(s—Tc,l)ds.

The contribution to Cjy from the liver, Cp(t, 1), does not appear until ¢ > 7. > 0. As shown
in Figure 8, the concentration-time profile of the combined arterial/venous blood compartment
illustrates this phenomenon and its impact on the solution over a period of ten delay intervals.
The solution follows an apparent exponential curve on [0, 7.]; after this time, a marked increase
in concentration is seen as the initial input of dioxin to the liver (that which has not been taken
up by the hepatocytes) finally exits the organ and returns to the general circulation. As time
progresses this sharp demarcation in solutions at the end of each delay interval diminishes.

10



C_(t) for D,, =5, 1_=0.016667 hrs, N =16
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Figure 8: Predicted concentrations of TCDD in the combined arterial /venous blood supply, C,,
for a period of ten circulatory delay intervals.

4.3.2 Predictions of the Model with and without Circulatory Delay

The concentration of TCDD in the arterial/venous blood supply (Cl,) is illustrated in Figure 9
for different values of 7. (0 < 7. < 1 minute). Higher concentrations of TCDD are predicted
for smaller values of 7, due to the decrease in the length of time before input of TCDD from
the liver compartment appears at the site of measurement in the venous blood. This would
suggest that models which ignore the circulatory delay may result in an over-prediction of TCDD
concentration. The predicted concentration of TCDD in the blood at the exit from the liver,
Cp(t, 1), is shown in Figure 10.

4.3.3 Dependence on the Axial Dispersion Number

In Section 4.3, we explained that the magnitude of the axial dispersion number does not affect the
arterial /venous blood concentration, Cy, on the initial delay interval [0, 7.]. On [r, 27.], however,
we begin to see the effects of liver concentrations on the amount of TCDD in the arterial /venous
blood supply. For Dy very small (Dy — 0), the model is driven predominantly by convective
forces; that is, the predictions are closely related to that of a plug-flow model. As Dy increases
(Pny — o0), the model approaches one with a well-mixed state, with uniform concentrations
along the length of the cylinder, so that input to the cylinder at = 0 is immediately distributed
along its length. This results in higher TCDD concentrations along the cylinder as compared to
those predicted with lower values of Dy . Figures 11 and 12 depict the variations in predicted
concentrations for C'g as a function of z, after one minute and one hour, respectively. The effects
of these variations on the arterial blood compartment are shown in Figure 13, as Dy varies from

5 to 1000.

4.3.4 Remarks on the Magnitude of the Dispersion
Number

Roberts and Rowlands estimated the dispersion number to be between 0.1 and 0.2 for red blood
cells and other non-eliminated solutes following a bolus input [12] and 0.2-0.5 at steady state fol-
lowing a constant input concentration [19]. They noted, however, that it is likely that dispersion
numbers obtained for extracted solutes will generally be higher than those for substances that
are not eliminated [12]. Moreover, binding of solutes to cellular constituents results in longer

11



Ca (t): Dependence on T for N, = 16, D =5
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Figure 9: Predicted concentrations of TCDD in the combined arterial /venous blood supply as a
function of the delay period, 7., for 0 <¢ < 1 minute.

CB(t,:L): Dependence on T for N, = 16, Dy =5
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Figure 10: Predicted concentrations in blood at the exit from the liver as a function of the delay
period, 7, for 0 < ¢ < 3 minutes.



CB(t,x) for t = 0.016667 hrs, .= 0.016667 hrs, NX =16
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Figure 11: Predicted concentrations of TCDD in the liver blood compartment as a function of
distance, z, and the axial dispersion number, Dy, at time £ = 1 minute.

CB(t,x) fort=1 hrs, = 0.016667 hrs, Nx =16

36 T T T T T T T
35 B
34 D =5 -
N
- - DN =10
331
R DN =100
)
3 32F D, =1000| 4
S 32 N
<
s
'(3 31 b
=] - = - - - - - - - - - ________
8
S 30 B
S
29 B
28 B
27 B
26 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

distance, x (dimensionless)

Figure 12: Predicted concentrations of TCDD in the liver blood compartment as a function of
distance, z, and the axial dispersion number, Dy, at time ¢ = 1 hour.
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Ca (t): Dependence on DN for nx = 16, tC =0.016667 hr
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Figure 13: Predicted concentrations of TCDD in the combined arterial/venous blood compart-
ment as a function of the axial dispersion number, Dy .

residence times in the liver; solutes that are highly bound in the cells are retained in the liver for
long periods of time while those that are confined to the sinusoidal bed pass through the liver
quickly [12].

The dispersion number is dependent on blood flow rates, protein binding, elimination and
hepatic cell permeability, and is probably also species-dependent [12]. In our investigations of
the qualitative behavior of the TCDD model, we have used dispersion numbers varying from 0.5
to 1000. In simulations where the dispersion number was fixed and other parameters (such as the
circulatory delay, 7.) were varied, we chose to use values of Dy at least an order of magnitude
higher than Roberts and Rowlands’s estimate due to the likelihood that their estimates are too
low for our model. TCDD is highly lipophilic [20] and enters the cells easily, where it binds to
two intracellular proteins, the Ah receptor and CYP1A2. The dispersion model used in the data
analysis of Roberts and Rowlands assumed first-order binding to cellular constituents. The more
complex nonlinear chemical kinetics in our model may arguably correspond to a higher dispersion
number. In addition, the majority of the parameters taken from the literature (e.g., [2, 5, 21, 22])
were estimated by fitting well-stirred models to experimental data. Therefore, although our
investigations here were of a qualitative nature, the use of a high dispersion number may be
quantitatively more in keeping with those parameter estimates. The magnitude of the dispersion
number for the TCDD model is a question that is most properly addressed in the context of a
parameter identification problem, which would involve fitting the model to experimental data.

5 Future Directions

In this presentation we studied the qualitative behavior of the TCDD model and its dependence
on two parameters, the axial dispersion number, Dy, and a circulatory delay, 7.. We found
that predicted concentrations of TCDD in the liver increased with either increasing dispersion
number or decreasing circulatory delay. Furthermore, the model predicts spatial variations in
cellular concentrations of dioxin at low dispersion numbers, a feature that the most commonly
used model, the well-mixed model, does not provide.

Further analysis of the qualitative behavior of the system, including the effect of the induction
delay, is currently underway. The model will be adapted for spatially-varying basal synthesis and
induction of CYP1A2, thereby permitting comparisons to the multi-compartment liver model of
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Andersen et al. [6]. The development of these types of advanced, spatially-dependent pharma-
cokinetic and pharmacodynamic models may play an important role in the development of risk
assessment protocols for dioxin and other environmental toxins.
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Nomenclature
Abbr. Description Units
Aga(t) exit boundary condition term resulting from flux balance nmol /hr
Cy total arterial and venous blood TCDD concentration nmol /L
Can concentration of available Ah receptor protein

in hepatocytes nmol /L
Can_r concentration of Ah receptor-TCDD complex

in hepatocytes nmol /L
Cp total concentration of TCDD in liver blood nmol /L
Cp, concentration of available CYP1A2 in hepatocytes nmol /L
Cpr_r concentration of CYP1A2-TCDD complex in hepatocytes nmol/L
Cug concentration of unbound TCDD in liver blood nmol/L
Cuy concentration of unbound TCDD in hepatocytes nmol/L
Dn axial dispersion number
fug fraction of TCDD unbound in the blood
fup fraction of TCDD unbound in space of Disse
I(¢) input concentration of TCDD at time ¢ nmol/L/hr
Ip, maximum rate of synthesis of CYP1A2

in the presence of TCDD nmol/L/hr
ki1 association rate constant of TCDD and Ah receptor L/nmol/hr
kyo association rate constant of TCDD and CYP1A2 L/nmol/hr
k_y dissociation rate constant of Ah receptor-TCDD complex /hr
k_s dissociation rate constant of CYP1A2-TCDD complex /hr
ks apparent first-order metabolic clearance rate of TCDD /hr
kagan) rate constant for thermal inactivation of Ah receptor protein /hr
kacpr) rate constant for degradation of CYP1A2 /hr
ke rest of body elimination term /hr
kscan) rate constant for synthesis of Ah receptor protein nmol/L/hr
ks(pr rate constant for basal synthesis of CYP1A2 nmol/L/hr
P permeability coefficient of the hepatocytes to TCDD L/hr
Q volumetric flow rate of liver blood L/hr
Q. volumetric flow rate of venous blood L/hr
Te circulation delay hr
Tr lag time between TCDD binding to Ah receptor and

cellular response of CYP1A2 induction hr

Va combined arterial and venous blood volumes L
VB liver blood volume L
Vb Disse space volume L
Vi hepatocyte volume L
x dimensionless spatial variable (z = 0 corresponds to the inlet, = 1 to the outlet)
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